Chapter

Chemistry for Citizenship

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

Chemistry teaching programs have changed little in the last 40 years, despite the fact that both society and chemistry have changed a lot. In this chapter, we reflect on a “chemistry for all” and propose the urgency of definitively changing the orientation of chemistry programs, especially in the stages of basic education. The specific contribution that didactics of science can make to this important reform is analyzed in this chapter, and a well-founded proposal for new “chemistry for all” content in schools and comprehensive chemistry at the University is presented.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The aim of this paper is to show how an innovative technique can be used to introduce a method for uncovering intrinsic mechanisms that motivate changes in students’ mental models. The theoretical framework used to develop the method is based on the ONEPSY (ONtology, EPistemology and PSYchology) model. The ONEPSY model is rooted in the theoretical constructs of cognitive psychology (Johnson-Laird) and artificial intelligence on mechanistic mental models (de Kleer and Brown) as well as the psychological theories developed by Piaget and others about the construction of knowledge and cognitive mechanisms that enable us to learn and survive in the world. This method was used when regulating a dialogue between a teacher (interviewer) and a student (interviewee) and also when analysing this dialogue subsequently. Pask’s teachback technique was used to regulate the interview and showed its effectiveness for helping a student both to identify his difficulties and to be able to overcome them; it also helped him to develop the ability to build models that gradually move closer to scientific models based on intuitive reasoning (mental models). The emotions experienced by students during this process have been shown to be a decisive driving force—intrinsic motivation—for constructing and reconstructing their intuitive models and acquiring increasingly satisfactory mental models. The different regulatory processes controlled by the interviewer during the dialogue have also been outlined.
Article
Full-text available
The present paper deals with the chemistry that is taught in schools from an epistemological and cognitive approach. We wonder about the meaning that can have the discipline for those who learn without identifying with the academic purposes because they are elementary school students working in a specific context (the school). From this reflection, we propose a chemistry course for initial training of elementary school teachers with a modeler orientation. From an epistemological point of view we are working with the notion of ‘theoretical model’, which is derived from current cognitive philosophy of science's perspective, which proposes a semantic concept of a scientific theory facilitating the approximation of the phenomena and the theory that explains them. The cognitive dimension leads us to identify the consistency between the experimental interventions of students, their abstract representations and the language they use to explain what they do, what happens and why happens when they intervene in chemical phenomena. We identify the modelling process with a progressive fit between the three dimensions of human cognition to acquire the Chemical Change Model that guides and gives coherence to the lessons. Narratives were used that kept the interest of students and they refined their explanations during the modelling process. Discourse analysis of students during the learning process enabled us to identify the relations students established between their representations and their experimental interventions and the language they used. All this brought a new perspective to assess means for students to progress and to establish comparisons between them.
Article
Full-text available
En: Enseñanza de las ciencias : revista de investigación y experiencias didácticas Barcelona 2005, v. 23, n. 1, marzo ; p. 111-122 Se reflexiona sobre los temas de ciencias que se estudian en la escuela y sobre el significado del término -contenidos-, que se utiliza a menudo cuando los profesores se refieren a ellos. Las nuevas aportaciones de las ciencias cognitivas y de la lingüística muestran que -conocer- requiere -actividad- y sugieren que los contenidos escolares han de hacer posible el desarrollo de actividad científica de la cual los alumnos sean los protagonistas. Como consecuencia de la reflexión, se identifican algunas de las condiciones que deberían cumplir los programas de ciencias y se propone un itinerario para desarrollar los temas de las ciencias en la escuela, p. 122
Article
Full-text available
En: Enseñanza de las ciencias : revista de investigación y experiencias didácticas Barcelona 2003, v. 21, n. 3, noviembre; p. 371-386 Se presenta una propuesta de análisis del discurso de una profesora desde una perspectiva de comunicación multimoda, en el contexto de una clase de ciencias de secundaria donde se trabaja el ciclo del agua. Esta perspectiva implica considerar que cada modo comunicativo (el lenguaje oral y escrito, el gesto y el lenguaje visual) contribuye, de manera especializada o cooperativa, a dar significado a la entidad 'Ciclo del agua'. Se presenta la fundamentación teórica y la metodología utilizada para el análisis. Posteriormente se discuten los resultados y se plantean unas sugerencias que pretenden ayudar a tomar conciencia de los recursos comunicativos de que dispone el profesor en el aula, p. 385-386
Article
Full-text available
En: Alambique : didáctica de las ciencias experimentales Barcelona 2001, n. 29, julio-agosto-septiembre ; p. 43-52 Se pretende señalar y valorar los retos que deberá afrontar el desarrollo curricular y la enseñanza de la química en la década que se inicia a partir del análisis de los cambios que han tenido lugar en los últimos años. Se aborda la situación de la química en el nuevo sistema educativo, la necesidad de revisar los contenidos conceptuales, contenidos procedimentales, las actividades de enseñanza y los trabajos prácticos
Article
Full-text available
En: Enseñanza de las Ciencias : Revista de Investigación y Experiencias Didácticas Barcelona 1999, v. 17, n. 1, marzo ; p. 45-59 El propósito de este artículo es mostrar que el diseño de las prácticas escolares debería sufrir un completo cambio de tal modo que la experimentación científica fuera una prioridad en la enseñanza de las ciencias. Proponemos un diseño para un nuevo tipo de experimento, 'práctica de iniciación', basada en el concepto de transposición didáctica y en un modelo cognitivo de ciencia escolar. Mediante este nuevo tipo de práctica se intenta ayudar a los alumnos en la relación entre los fenómenos y las teorías científicas, Bibliografía p. 58-59
Article
Full-text available
This article uses S. Toulmin 's evolutionary epistemology in order to face the present-day situation of Science Education, considered a suficiently different discipline in comparison with the other scientific disciplines, having its own professional field and research. As a result of this, the importance of timing and the pressure to find ways or collective work are emphasised. This may allow to reach theoretical agreements which have not yet been achieved in a satisfactory way. The change of teaching institutions, methods of working and training, which would allow for the innovative teaching behaviour now considered adequate by the professional staaf is also considered absolutely relevant.
Book
Full-text available
Chemical education is essential to everybody because it deals with ideas that play major roles in personal, social, and economic decisions. This book is based on three principles: that all aspects of chemical education should be associated with research; that the development of opportunities for chemical education should be both a continuous process and be linked to research; and that the professional development of all those associated with chemical education should make extensive and diverse use of that research. It is intended for: pre-service and practising chemistry teachers and lecturers; chemistry teacher educators; chemical education researchers; the designers and managers of formal chemical curricula; informal chemical educators; authors of textbooks and curriculum support materials; practising chemists and chemical technologists. It addresses: the relation between chemistry and chemical education; curricula for chemical education; teaching and learning about chemical compounds and chemical change; the development of teachers; the development of chemical education as a field of enquiry. This is mainly done in respect of the full range of formal education contexts (schools, universities, vocational colleges) but also in respect of informal education contexts (books, science centres and museums).
Article
Since at least the eighteenth century scientific knowledge (then natural philosophy) was produced in groups of experts and specialists and was transmitted in schools, where, future experts and specialists were trained. The design of teaching has always been a complex process particularly in recent years when educational aims (for example, teaching scientific competence to everyone, not just to experts and specialists) present significant challenges. These challenges are much more than a simple reorganisation of the scientific knowledge pre-determined by the existing teaching tradition for different educational level. In the context of chemical education, the new teaching approaches should bring about not only the transmission of chemical knowledge but also a genuine chemical activity so as to ensure that students can acquire chemical thinking. Chemistry teaching should be revised according to contemporary demands of schooling. In order to move forward towards new teaching proposals, we must identify the genuine questions that generate ‘chemical criteria’ and we should focus on them for teaching. We think that a good strategy is to look for those criteria in the philosophy and history of chemistry, from the perspective of didactics of science. This paper will examine the following questions: (1) How can school science be designed as a world-modelling activity by drawing on the philosophy of science. (2) How can ‘stories’ about the emergence of chemical entities be identified by looking at the history of chemistry? (3) How can modelling strategies be structured in school chemistry activities?
Article
Researchers have recently shown a growing interest in teachers' and pupils' beliefs about the nature of science, and how these differ from the picture offered by historians, philosophers and sociologists. Tacit beliefs about how scientists work are, however, sustained by unexamined assumptions about language, and this paper explores those assumptions and suggests that attention to beliefs about the nature of language would be a productive focus in future research and in efforts at curriculum reform. A key tension is that between the learner's experience of language as an interpretive system, actively used for generating new understanding, and of language as a labelling system for transmitting established information.
Article
Offers perspectives on the need for secondary science curriculum reform. Discusses curriculum issues in terms of four stages which include: the nature of science; principles of curriculum design; pupils needs and entitlements; and practical proposals for exploring curriculum models. (ML)
Article
"This volume presents an attempt to construct a unified cognitive theory of science in relatively short compass. It confronts the strong program in sociology of science and the positions of various postpositivist philosophers of science, developing significant alternatives to each in a reeadily comprehensible sytle. It draws loosely on recent developments in cognitive science, without burdening the argument with detailed results from that source. . . . The book is thus a provocative one. Perhaps that is a measure of its value: it will lead scholars and serious student from a number of science studies disciplines into continued and sharpened debate over fundamental questions."—Richard Burian, Isis "The writing is delightfully clear and accessible. On balance, few books advance our subject as well."—Paul Teller, Philosophy of Science
Contribución del lenguaje al proceso de modelización del Cambio Químico
  • J L Estaña
  • Uab Google Liec
  • Scholar
La importància dels exemples en la Ciència escolar
  • J L Estaña
  • JL Estaña
El Projecte Ciències 12-16. Alambique
  • M Izquierdo
  • M Cabello
  • N Solsona
Actividad química escolar: y modelización metacognitiva del cambio químico. Ponencia presentada al Seminario Internacional “Contextualizar y modelizar para enseñar química
  • M Izquierdo
La química en el bachillerato. Nuevos contenidos CTS, per los mismos conceptos
  • A Caamaño
La comunicació i les habilitats cognitivolingüístiques
  • J Jorba
Pensar, lescriure i actuar a la classe de ciències. Per un ensenyament de les ciències racional i raonable
  • J Aliberas
  • M Izquierdo
Introducción a un método para la conducción y el análisis del diálogo didáctico basado en la evaluación de modelos mentales
  • J Aliberas
  • R Gutiérrez
  • M Izquierdo
De la Química Faraday a la Química Logse: 20 anys de docència i ienc pas enrere
  • A Caamaño
La importància dels exemples en la Ciència escolar. Tesina de màster
  • J L Estaña
Competénces clés. Unité Européenne. Google Scholar
  • Eurydice
Focus on Content en Defining an Identity
  • P Fensham
What is the purpose of this Experiment? Or Can Student learn Something from Doing Experiments?
  • C Hart
Enseñar, aprender y evaluar: un proceso de regulación continua
  • J Jorba
  • N Sanmartí
Propostes docents per a la “Química pas a pas
  • M Izquierdo
  • C Merino
Mesuring students knowledge and skills. A new framework for assessment
  • Ocde
L’emergència del concepte de Canvi Químic
  • N Solsona
The Content of Science: A Constructivist Approach to its Teaching and Learning
  • R White
  • P Fensham
  • R Gunstone