Book

Radiative Forcing of Climate Change

Authors:

Abstract

Changes in climate are driven by natural and human-induced perturbations of the Earth's energy balance. These climate drivers or "forcings" include variations in greenhouse gases, aerosols, land use, and the amount of energy Earth receives from the Sun. Although climate throughout Earth's history has varied from "snowball" conditions with global ice cover to "hothouse" conditions when glaciers all but disappeared, the climate over the past 10,000 years has been remarkably stable and favorable to human civilization. Increasing evidence points to a large human impact on global climate over the past century. The report reviews current knowledge of climate forcings and recommends critical research needed to improve understanding. Whereas emphasis to date has been on how these climate forcings affect global mean temperature, the report finds that regional variation and climate impacts other than temperature deserve increased attention. © 2005 by the National Academy of Sciences. All rights reserved.
... The consequent change in radiative forcing resulting from such an increase in atmospheric CO 2 concentration can be approximated using the following equation [101]: ...
Article
The sustained rapid growth and learning rates displayed by solar PV and wind electricity generation capacity over recent decades appear to be unprecedented. With these technologies now available at costs competitive with - or below - those of fossil fuel incumbents in many parts of the world, high rates of growth appear likely to continue. In this paper we use ‘top-down’ extrapolation of global trends and simple and transparent models to attempt to falsify the proposition that PV and wind have the potential to achieve dominance in global primary energy supply by 2050. We project future deployment of PV and wind using a logistic substitution model, and examine a series of potentially fundamental constraints that could inhibit continued growth. Adopting conservative assumptions, we find no insuperable constraints across physical and raw materials requirements, manufacturing capacity, energy balance (EROEI), system integration and macro-economic conditions, to this outcome. We also demonstrate synergy with direct air carbon capture and storage (DACCS) that would allow the achievement of global net-zero CO2 emissions by mid-century. Achieving such an outcome would require large scale reconfiguration of the architecture of global and regional energy systems, particularly from 2040 onwards. Low cost primary electricity is likely to be a significant factor in driving such a reorganisation. But given the speed and depth of the transition, hurdles will remain that will require foresight and strategic, coordinated action to overcome.
... The radiation transfer properties of tropospheric aerosols are one of the largest sources of uncertainty in climate models (NRC, 1996). The uncertainty is particularly acute over the world's oceans because there is a lack of in situ measurements that can be used to quantify the spatial distribution, chemical composition, and radiation-transfer characteristics of the aerosols in the marine atmosphere. ...
Article
Full-text available
Aviation emissions are responsible for an estimated 24,000 premature mortalities annually and 3.5% of anthropogenic radiative forcing (RF). Emissions of nitrogen and sulfur oxides (NO x and SO x ) contribute to these impacts. However, the relative contributions and mechanisms linking these emissions to formation and impacts of secondary aerosols (as opposed to direct aerosol emissions) have not been quantified, including how short-lived aerosol precursors at altitude can increase surface-level aerosol concentrations. We apply global chemistry transport modeling to identify and quantify the different chemical pathways to aerosol formation from aviation emissions, including the resulting impact on radiative forcing. We estimate a net aerosol radiative forcing of –8.3 mWm ⁻² , of which –0.67 and –7.8 mWm ⁻² result from nitrate and sulfate aerosols respectively. We find that aviation NO x causes –1.7 mWm ⁻² through nitrate aerosol forcing but also –1.6 mWm ⁻² of sulfate aerosol forcing by promoting oxidation of SO 2 to sulfate aerosol. This accounts for 21% of the total sulfate forcing, and oxidation of SO 2 due to aviation NO x is responsible for 47% of the net aviation NO x attributable RF. Aviation NO x emissions in turn account for 41% of net aviation-aerosol-attributable RF (non-contrail). This is due to ozone-mediated oxidation of background sulfur and the “nitrate bounce-back" effect, which reduces the net impact of sulfur emissions. The ozone-mediated mechanism also explains the ability of cruise aviation emissions to significantly affect surface aerosol concentrations. We find that aviation NO x emissions cause 72% of aviation-attributable, near-surface aerosol loading by mass, compared to 27% from aviation SOx emissions and less than 0.1% from direct emission of black carbon. We conclude that aviation NO x and SO x emissions are the dominant cause of aviation-attributable secondary inorganic aerosol radiative forcing, and that conversion of background aerosol precursors at all altitudes is amplified by enhanced production of aviation attributable oxidants at cruise altitudes.
Article
Full-text available
Risks from human intervention in the climate system are raising concerns with respect to individual species and ecosystem health and resiliency. A dominant approach uses global climate models to predict changes in climate in the coming decades and then to downscale this information to assess impacts to plant communities, animal habitats, agricultural and urban ecosystems, and other parts of the Earth’s life system. To achieve robust assessments of the threats to these systems in this top-down, outcome vulnerability approach, however, requires skillful prediction, and representation of changes in regional and local climate processes, which has not yet been satisfactorily achieved. Moreover, threats to biodiversity and ecosystem function, such as from invasive species, are in general, not adequately included in the assessments. We discuss a complementary assessment framework that builds on a bottom-up vulnerability concept that requires the determination of the major human and natural forcings on the environment including extreme events, and the interactions between these forcings. After these forcings and interactions are identified, then the relative risks of each issue can be compared with other risks or forcings in order to adopt optimal mitigation/adaptation strategies. This framework is a more inclusive way of assessing risks, including climate variability and longer-term natural and anthropogenic-driven change, than the outcome vulnerability approach which is mainly based on multi-decadal global and regional climate model predictions. We therefore conclude that the top-down approach alone is outmoded as it is inadequate for robustly assessing risks to biodiversity and ecosystem function. In contrast the bottom-up, integrative approach is feasible and much more in line with the needs of the assessment and conservation community. A key message of our paper is to emphasize the need to consider coupled feedbacks since the Earth is a dynamically interactive system. This should be done not just in the model structure, but also in its application and subsequent analyses. We recognize that the community is moving toward that goal and we urge an accelerated pace.
Article
Full-text available
The article describes briefly the problem of the aerosols influence on the energetic budget of the Earth whole climate system and of the atmosphere particularly. The literary sources comprising such estimations are analyzed and aerosols basic properties are presented which are necessary to determine the quantitative estimations of the aerosols climatology effects. Basic terms and definitions are stated that are using to estimate the influence of the external and internal agents of the climate system on its energy budget. Basic features of the algorithms used to compute the co-called radiative forcing from data of the sun-photometer international network AERONET briefly described. The estimations of the aerosols radiative forcing obtained from measurements with the sun-photometer at the Kyiv AERONET site starting from 2008 are presented. Also the comparison of the Kyiv aerosol RF data to the aerosol RF data at some others urban regions of the globe are presented.
Book
Climate change is occurring, is caused largely by human activities, and poses significant risks for--and in many cases is already affecting--a broad range of human and natural systems. The compelling case for these conclusions is provided in Advancing the Science of Climate Change, part of a congressionally requested suite of studies known as America's Climate Choices. While noting that there is always more to learn and that the scientific process is never closed, the book shows that hypotheses about climate change are supported by multiple lines of evidence and have stood firm in the face of serious debate and careful evaluation of alternative explanations. As decision makers respond to these risks, the nation's scientific enterprise can contribute through research that improves understanding of the causes and consequences of climate change and also is useful to decision makers at the local, regional, national, and international levels. The book identifies decisions being made in 12 sectors, ranging from agriculture to transportation, to identify decisions being made in response to climate change. Advancing the Science of Climate Change calls for a single federal entity or program to coordinate a national, multidisciplinary research effort aimed at improving both understanding and responses to climate change. Seven cross-cutting research themes are identified to support this scientific enterprise. In addition, leaders of federal climate research should redouble efforts to deploy a comprehensive climate observing system, improve climate models and other analytical tools, invest in human capital, and improve linkages between research and decisions by forming partnerships with action-oriented programs. © 2011 by the National Academy of Sciences. All rights reserved.
Book
In response to a request from Congress, Surface Temperature Reconstructions for the Last 2,000 Years assesses the state of scientific efforts to reconstruct surface temperature records for Earth during approximately the last 2,000 years and the implications of these efforts for our understanding of global climate change. Because widespread, reliable temperature records are available only for the last 150 years, scientists estimate temperatures in the more distant past by analyzing "proxy evidence," which includes tree rings, corals, ocean and lake sediments, cave deposits, ice cores, boreholes, and glaciers. Starting in the late 1990s, scientists began using sophisticated methods to combine proxy evidence from many different locations in an effort to estimate surface temperature changes during the last few hundred to few thousand years. This book is an important resource in helping to understand the intricacies of global climate change. © 2006 by the National Academy of Sciences. All rights reserved.
Article
A three-dimensional cloud-resolving model (CRM) with observed large-scale forcing is used to study how ice nuclei (IN) affect the net radiative flux at the top of the atmosphere (TOA). In all the numerical experiments carried out, the cloud ice content in the upper troposphere increases with IN number concentration via the Bergeron process. As a result, the upward solar flux at the TOA increases whereas the infrared one decreases. Because of the opposite response of the two fluxes to IN concentration, the sensitivity of the net radiative flux at the TOA to IN concentration varies from one case to another. Six tropical and three midlatitudinal field campaigns provide data to model the effect of IN on radiation in different latitudes. Classifying the CRM simulations into tropical and midlatitudinal and then comparing the two types reveals that the indirect effect of IN on radiation is greater in the middle latitudes than in the tropics. Furthermore, comparisons between model results and observations suggest that observational IN data are necessary to evaluate long-term CRM simulations.
Article
Full-text available
The 19th-century agrarian landscape of New Jersey (NJ) and the surrounding region has been extensively transformed to the present-day land cover by urbanization, reforestation, and localized areas of deforestation. This study used a mesoscale atmospheric numerical model to investigate the sensitivity of the warm season climate of NJ to these land cover changes. Reconstructed 1880s-era and present-day land cover data sets were used as surface boundary conditions for a set of simulations performed with the Regional Atmospheric Modeling System (RAMS). Three-member ensembles with historical and present-day land cover were compared to examine the sensitivity of surface air and dew point temperatures, rainfall, and the individual components of the surface energy budget to these land cover changes. Mean temperatures for the present-day landscape were 0.3–0.6°C warmer than for the historical landscape over a considerable portion of NJ and the surrounding region, with daily maximum temperatures at least 1.0°C warmer over some of the highly urbanized locations. Reforested regions, however, were slightly cooler. Dew point temperatures decreased by 0.3–0.6°C, suggesting drier, less humid near-surface air for the present-day landscape. Surface warming was generally associated with repartitioning of net radiation from latent to sensible heat flux, and conversely for cooling. While urbanization was accompanied by strong surface albedo decreases and increases in net shortwave radiation, reforestation and potential changes in forest composition have generally increased albedos and also enhanced landscape heterogeneity. The increased deciduousness of forests may have further reduced net downward longwave radiation.
Article
Full-text available
Although greenhouse gas forcing has global significance, the aerosol forcing is regional and seasonal, associated with the much shorter aerosol residence times in the atmosphere, and could become dominant on a regional scale. Several studies indicate that aerosol radiative forcing is among the highest in the world over the Mediterranean in the summer. In this study, the aerosol impact (forcing) on the short‐wave and long‐wave fluxes, as well as the radiative heating rate due to aerosols for different altitudes in the atmosphere over Athens, Greece, was estimated using satellite data and SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model. The short‐wave aerosols radiative forcing at the surface in cloud‐free conditions during the period 2000–2001 ranged from 10.8 to 20.1 W m in the winter and from 15.2 to 16.6 W m in the summer. The radiative heating rates near the surface due to aerosols were found to be in the range of 0.2–0.5 K day during the winter period and 0.4 K day during the summer period simultaneous with enhanced heating in the lower troposphere (below 5 km). The long‐wave radiative forcing (clear sky) at the top of the atmosphere induced by aerosols during night‐time was estimated to be only 0.02–0.04 W m and 0.04–0.05 W m for the winter and summer months, respectively.
Article
Full-text available
The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15%. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation, by empirical determination of the earth's climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluated by their performance over this period, is shown to require substantial reduction in the uncertainty of aerosol forcing over this period.
Article
Full-text available
A surface forcing response framework is developed that enables an understanding of time-dependent climate change from a surface energy perspective. The framework allows the separation of fast responses that are unassociated with global-mean surface air temperature change (ΔT), which is included in the forcing, and slow feedbacks that scale with ΔT. The framework is illustrated primarily using 2 × CO2 climate model experiments and is robust across the models. For CO2 increases, the positive downward radiative component of forcing is smaller at the surface than at the tropopause, and so a rapid reduction in the upward surface latent heat (LH) flux is induced to conserve the tropospheric heat budget; this reduces the precipitation rate. Analysis of the time-dependent surface energy balance over sea and land separately reveals that land areas rapidly regain energy balance, and significant land surface warming occurs before global sea temperatures respond. The 2 × CO2 results are compared to a solar increase experiment and show that some fast responses are forcing dependent. In particular, a significant forcing from the fast hydrological response found in the CO2 experiments is much smaller in the solar experiment. The different fast response explains why previous equilibrium studies found differences in the hydrological sensitivity between these two forcings. On longer time scales, as ΔT increases, the net surface longwave and LH fluxes provide positive and negative surface feedbacks, respectively, while the net surface shortwave and sensible heat fluxes change little. It is found that in contrast to their fast responses, the longer-term response of both surface energy fluxes and the global hydrological cycle are similar for the different forcing agents.
ResearchGate has not been able to resolve any references for this publication.